Switching Dynamics in Reaction Networks Induced by Molecular Discreteness
نویسندگان
چکیده
To study the fluctuations and dynamics in chemical reaction processes, stochastic differential equations based on the rate equation involving chemical concentrations are often adopted. When the number of molecules is very small, however, the discreteness in the number of molecules cannot be neglected since the number of molecules must be an integer. This discreteness can be important in biochemical reactions, where the total number of molecules is not significantly larger than the number of chemical species. To elucidate the effects of such discreteness, we study autocatalytic reaction systems comprising several chemical species through stochastic particle simulations. The generation of novel states is observed; it is caused by the extinction of some molecular species due to the discreteness in their number. We demonstrate that the reaction dynamics are switched by a single molecule, which leads to the reconstruction of the acting network structure. We also show the strong dependence of the chemical concentrations on the system size, which is caused by transitions to discretenessinduced novel states. PACS numbers: 82.39.-k, 87.16.-b Submitted to: J. Phys.: Condens. Matter Switching Dynamics in Reaction Networks Induced by Molecular Discreteness 2
منابع مشابه
Theoretical analysis of discreteness-induced transition in autocatalytic reaction dynamics.
Transitions in the qualitative behavior of chemical reaction dynamics with a decrease in molecule number have attracted much attention. Here, a method based on a Markov process with a tridiagonal transition matrix is applied to the analysis of this transition in reaction dynamics. The transition to bistability due to the small-number effect and the mean switching time between the bistable state...
متن کاملMolecular Dynamics Simulation of Al/NiO Thermite Reaction Using Reactive Force Field (ReaxFF)
In this work, the thermal reaction of aluminum (Al) and nickel oxide (NiO) was investigated by molecular dynamics simulations. Some effective features of reaction such as reaction temperature, the reaction mechanism, and diffusion rate of oxygen into aluminum structure were studied. ReaxFF force field was performed to study the Al/NiO thermite reaction behavior at five different temperatures (5...
متن کاملTransitions induced by the discreteness of molecules in a small autocatalytic system.
The autocatalytic reaction system with a small number of molecules is studied numerically by stochastic particle simulations. A novel state due to fluctuation and discreteness in molecular numbers is found, characterized as an extinction of molecule species alternately in the autocatalytic reaction loop. Phase transition to this state with changes of the system size and flow is studied, while a...
متن کاملMolecular discreteness in reaction-diffusion systems yields steady states not seen in the continuum limit.
We investigate the effects of the spatial discreteness of molecules in reaction-diffusion systems. It is found that discreteness within the so-called Kuramoto length can lead to a localization of molecules, resulting in novel steady states that do not exist in the continuous case. These states are analyzed theoretically as the fixed points of accelerated localized reactions, an approach that wa...
متن کاملTransition phenomena induced by internal noise and the discreteness
We study a simple chemical reaction system and effects of the internal noise. Although stochastic differential equations are often used in order to study the fluctuations, they can not treat the discreteness in the number of components (molecules, individuals, and so on) because they are based on the continuum approximation which is justified by the large system size. The discreteness of compon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006